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Abstract. This paper investigates a real-world application of the free
energy distance between nodes of a graph [14, 20] by proposing an im-
proved extension of the existing Fraud Detection System named APATE
[36]. It relies on a new way of computing the free energy distance based
on paths of increasing length, and scaling on large, sparse, graphs. This
new approach is assessed on a real-world large-scale e-commerce payment
transactions dataset obtained from a major Belgian credit card issuer.
Our results show that the free-energy based approach reduces the com-
putation time by one half while maintaining state-of-the art performance
in term of Precision@100 on fraudulent card prediction.
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1 Introduction

With the emergence of e-commerce systems, the number of online credit card
transactions has skyrocketed. However, not all of these transactions are legiti-
mate – worldwide card fraud losses in 2017 reached 24.26 billion US dollars, an
increase of 6.4% from 2016, and the forecast for the following years goes in the
same direction [8]. This huge amount of loss has led to the development of a
series of countermeasures to limit the number of frauds. Among these counter-
measures, Fraud Detection System (FDS) aims to identify perpetrated fraud as
soon as possible [4].

The credit card fraud detection domain presents a number of challenging
issues [1, 7]. Firstly, there are millions of credit card transactions processed each
day, creating a massive stream of data. That is why data mining and machine
learning play an important role in FDS, as they are often applied to extract and
uncover the hidden truth behind very large quantities of data [26]. Secondly, the
data are unbalanced: there is (fortunately) a more prevalent number of genuine
transactions than fraudulent ones. The main risk with unbalanced classes is that
the classifier tends to be overwhelmed by the majority class and to ignore the
minority class [22]. Thirdly, the data are exposed to a concept drift as the habits
and behaviors of the consumers and fraudsters change over time [9]. Finally, the
FDS needs to process the acceptance check of an online credit-card transaction
within a few seconds to decide whether to pursue the transaction or not [36].
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This work focuses on automatically detecting fraudulent e-commerce trans-
actions using network-related features and free energy distance [20]. Our work
is based on a recent paper [21] which introduced several improvements to an
existing collective inference algorithm called APATE [36]. More precisely, this
algorithm starts from a defined number of known frauds and propagates the
fraudulent influence through a graph to obtain a risk score, quantifying the fraud-
ulent behavior for each transaction, cardholder, and merchant [36]. In short, the
main contributions of this paper are:

• a new way of computing the free energy distance [20] scaling on large, sparse,
graphs;

• an application of this method to the fraud detection field through the adap-
tation of the existing FDS APATE [36];

• an experimental comparison between this method and others on a large
real-life e-commerce credit card transaction dataset obtained from Worldline
SA/NV.

The remainder of the paper is organised as follows. Section 2 contains the
related work. Section 3 introduces the proposed contributions. In Section 4, we
present the experimental comparisons and analyse the results. Finally, Section
5 concludes the paper.

2 Related work

Over the past few years, credit card fraud detection has generated a lot of in-
terest and a wide range of techniques has been suggested. However, the number
of publications available is only the tip of the iceberg. Indeed, credit card is-
suers protect the sharing of data and most algorithms are produced in-house,
concealing the details of the models [36].

Credit card fraud detection techniques can be seen as a classification problem.
Therefore, it can be categorized into three broad types of learning: supervised
(SL), unsupervised (USL) and semi-supervised (SSL). The most widespread ap-
proach is the supervised one which uses the information content in the labels,
i.e. ‘fraud’ and ‘genuine’ in our case, to build a classification model. Common su-
pervised methods are logistic regression [30], decision trees [30], Bayes minimum
risk [2], support vector machines [10], meta-learning [7], case-based reasoning
[38], genetic algorithms [12], hidden Markov models [3, 33], association rules [29],
random forest [10] and, the most prevalent one for the moment, artificial neural
networks [10, 18, 40]. Unlike supervised techniques, unsupervised learning does
not use the class label to build the model, but simply extracts clusters of similar
observations while maximizing the difference between these clusters. Common
unsupervised methods include standard clustering methods, self-organizing map
[39] and peer group analysis [37]. The interested reader is advised to consult [10,
26, 41] for more information.

The last category of classification techniques is semi-supervised learning
which lies between supervised and unsupervised techniques, since it constructs
predictive models using labeled samples together with a usually larger amount of
unlabeled samples [13]. Some common semi-supervised methods are graph-based
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approaches, which consist in the creation of a graph model that reflects the rela-
tions included in the data and then transfers the labels on the graph to build a
classification model [41]. Compared to the two other categories presented before,
there are few publications about semi-supervised methods applied to card fraud
detection. Ramaki et al. [28] proposed a model on a semantic connection between
data stored for every transaction fulfilled by a user, then represent it by ontology
graph and finally store them in patterns databases. Cao et al. [6] suggested Hit-
Fraud, a collective fraud detection algorithm that captures the inter-transaction
dependency based on a heterogeneous information network. Molloy et al. [24]
presented a new approach to cross channel fraud detection based on feature ex-
traction techniques applied to a graph of transactions. Finally, Lebichot et al.
[21] proposed several improvements to an existing FDS, APATE, which spreads
fraudulence influence through a graph by using a limited set of confirmed fraud-
ulent transactions [36]. Our FDS is of this type.

As mentioned earlier, we base our approach on the previous work of Lebichot
et al. [21] and on the methodology of APATE [36]. The rest of this section
summarizes these two works to make this paper self-contained.

APATE starts by building a real tripartite symmetric transaction/cardholder/
merchant adjacency matrix Atri = (aij) based on a list of time stamped, labeled
transactions where each cardholder and merchant is known,

Atri =

 0t×t At×c At×m
Ac×t 0c×c 0c×m
Am×t 0m×c 0m×m


where Ac×t is a biadjacency matrix where cardholders are linked with their
corresponding transactions, Am×t is a biadjacency matrix where merchants are
linked with their corresponding transactions and 0···×··· is a correctly sized ma-
trix full of zeros. Moreover, a column vector ztri

0 = [zTrx
0 ; zCH

0 ; zMer
0 ], containing

the risk score of each transaction (Trx), cardholder (CH) and merchant (Mer)
is created and initialized with zeroes, except for known fraudulent transactions
(Trx) which are set to one.

APATE integrates also a time decay factor in order to address the dynamic
behavior of fraud. Interested readers can consult the original APATE paper [36]
for more information as it is not crucial to understand the framework in detail
here. At the end, we obtain four pairs of Atri and ztri

0 corresponding to four
different time windows: no decay, day decay, or short term (ST), week decay, or
medium term (MT) and monthly decay, or long term (LT).

Then for each of the four time window, in order to spread fraudulence influ-
ence through the tripartite graph, the vector ztri

0 is updated following an iterative
procedure similar to the PageRank algorithm [27], namely the random walk with
restart (RWWR) [35]:

ztri
k = αPTztri

k−1 + (1− α) ztri
0 (1)

where k is the iteration number, P = (pij) = (
aij
ai•

) is the transition probability

matrix [13] associated to Atri, α is the probability to continue the walk, and
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symmetrically (1 − α) is the probability to restart the walk from a fraudulent
transaction. Eq. 1 is iterated until convergence, to reach ztri

k∗ (where k∗ stands for
k at convergence) from which three new feature vectors can be extracted, zTrx

k∗ ,
zCH
k∗ and zMer

k∗ . These three features correspond to a risk measure for each trans-
action, cardholder and merchant respectively. Therefore, for each transaction,
there are 12 new graph based features created.

As this procedure cannot be computed in a few seconds, the scores for each
transaction, cardholder and merchant are only re-estimated once a day or once
per hour, in order to analyse transactions that will occur during the day. In
cases where new merchants or cardholders appear, their scores are set to zero
as nothing can be inferred from the past graph data. The risk score of a new
transaction that did not yet occur in the past can be approximated using an
update formula presented in [36].

Finally, APATE combines those 12 graph-based features with the transaction-
related features initially present in the dataset (see [36] for details) , and use these
as input of a random forest classifier.

While APATE is showing good performance, according to Lebichot et al.
[21], it can be improved in three ways by: dealing with hubs, introducing a time
gap and including investigators feedback.

The first way of improvement consists in dealing with hubs, which are nodes
having a high degree, i.e. a large number of links with other nodes. Due to their
connections to a lot of transactions, hubs tend to accumulate a high risk score.
A simple solution to counterbalance this accumulation is to divide the risk score
by the node degree after convergence of Eq. 1. Lebichot et al. [21] make the link
between this solution and the Regularized Commute Time Kernel (RCTK) [23]
in the sense that the elements of this kernel have the same interpretation as for
the RWWR used in APATE. Therefore, they recommended the use of RCTK to
deal with the problem of hubs.

Their second proposal is to introduce a time gap between the training set
and the test set. Lebichot et al. [21] explain that, in most real FDS, the model
cannot be based on the past few days, as is proposed in APATE, for two reasons.
The first reason is that, in a real setting, the fraudulent transaction tags cannot
be known without human investigator feedback. However, this feedback usually
takes several days, mainly because it is often the cardholders that report unde-
tected fraud. The second reason is that the strategy of the fraudsters changes
over time and so it is less reliable to build the model on old data.

The third way of improvement consists in including feedback from the inves-
tigators on the predictions of the previous days. Even if it appears clear, in view
of the second proposal, that it is impossible to know all fraud tags for the gap
set, it is still conceivable that a fraction of previous alerts have been confirmed
or overturned by human investigators (which is indeed the case in practice). We
will refer later to this option as FB (for feedback) in Section 4.

3 The free energy distance

As discussed previously, the main contributions of this work are three-fold, (1)
to propose a way of computing the free energy distance scaling on large, sparse,
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graphs and (2) to incorporate the free energy framework into a FDS and (3)
evaluate its performance on a real-world large-scale fraud detection problem. In
this section, we start by providing a short account of the free energy distance
and its properties, before discussing its implementation in the FDS. Note that
this distance measure between nodes obtained very good results in a number of
semi-supervised classification and clustering tasks [14, 16, 31, 32].

3.1 Background

The free energy distance [20], also know as the bag-of-paths potential distance
[14], is a distance measure between nodes of a directed, strongly connected, graph
based on the bag-of-paths framework. It is usually introduced by considering a
statistical physics framework where it corresponds to the minimized free energy1

of the bag-of-paths system connecting two nodes, but we will consider here a
more intuitive explanation.

We already introduced the random walk on the graph whose transition prob-
ability matrix is P, see Eq. 1. Recall that its elements are nonnegative and
each of its rows sums to one. The free energy distance will be computed to some
nodes of interestA (in our application, the fraudulent nodes), called target nodes.
These nodes are made killing and absorbing by setting the corresponding rows
in the transition probability matrix to zero. Note that if the original graph is not
strongly connected, we used a common trick, namely to add a new absorbing,
killing, (sink) node connected to the set of target nodes A with a directed link.
In addition, we also assume that there is a nonnegative cost cij ≥ 0 associated to
each edge (i, j) of the graph with C = (cij) being the cost matrix. The cost on
an edge is assigned depending on the application and quantifies, in the model,
the difficulty of following this edge in the random walk [13]. In our application,
we fixed the cost to cij = 1/aij .

Then, a new matrix W = P◦exp[−θC] is introduced, where ◦ is the elemen-
twise (Hadamard) product and θ is a positive parameter (the inverse tempera-
ture). This matrix is substochastic because each of its row sums is less or equal
to 1 and at least one row sum is strictly less than 1 (for example the killing,
absorbing, nodes whose row sum is equal to zero). In fact, this matrix defines
a transition probability matrix of a killed random walk on the graph, because
at each time step, when visiting a node i, the random walker has a probability
0 ≤ (1−

∑
j∈Succ(i) wij) ≤ 1, where Succ(i) is the set of successor nodes of node

i, of giving up the walk – we then say that the walker is killed. The larger the
cost to successors, the larger the probability of being killed.

In this context, it can be shown that the directed free energy dissimilarity
φiA between any node s = i (starting node) and the absorbing target nodes
in A is simply − 1

θ log P(reaching(A)|s = i), that is, minus the logarithm of
the probability of surviving during the killed random walk, i.e., of reaching an
absorbing node without being killed during the walk [14]. Let us now explain
how it can be computed.

1 Expected total cost of the paths plus scaled relative entropy of the probability dis-
tribution of following these paths (see [20] for details).
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The free energy distance between two nodes i and j is obtained by ∆ij =
φij+φji

2 . Besides being a distance measure, it has many interesting properties.
One of those is the fact that it interpolates between two widely used distances,
the shortest path distance and the commute cost distance (which is proportional
to the effective resistance also called resistance distance [13]). Indeed, if the
parameter θ approaches ∞, the free energy distance converges to the shortest
path distance [13]. Conversely, if θ approaches 0+, we recover the commute cost
distance [13]. The details and proofs of these properties are available in [14].

The free energy distance between all pairs of nodes can be computed by
performing a matrix inversion [20]. However, Françoisse et al. [14] showed that
the directed free energy distance to a unique, fixed, target node t (the set of
absorbing nodes reduces to node t) can also be computed thanks to an extension
of the Bellman-Ford formula:

φit(τ + 1) =

−
1
θ log

[ ∑
j∈Succ(i)

pij exp
[
− θ(cij + φjt(τ))

]]
if i 6= t

0 if i = t
(2)

where τ is the iteration number2. This expression uses the softmin, or log-sum-
exp, operator [25], softminθ,q(x) = − 1

θ log
∑n
j=1 qj exp[−θxj ] (with qj ≥ 0 and∑n

j=1 qj = 1) where, in the present context of Eq. 2, qj = pij and xj =
(cij+φjt(τ)). This operator interpolates between the minimum and the weighted
average of the values xj with weights qj . In fact, Eq. 2 is nothing else than the
Bellman-Ford formula (based on dynamic programming; see, e.g., [15]) where
the minimum operator is replaced by the soft minimum operator. Eq. 2 can be
iterated until convergence to the directed free energy distances. The main advan-
tage of this formulation is that it can be applied on large, sparse, graphs thanks
to some specific techniques which are explained below. After convergence, φit
contains − 1

θ log of the probability of surviving during a killed random walk from
i to t with transition matrix W [14].

3.2 Computing the directed free energy distance on large graphs

In order to scale the computation of the free energy, we will use Eq. 2 and rely
on two different ideas: (i) the log-sum-exp trick and (ii) to bound the length of
the set of paths on which the distance is computed. This second point brings
another benefit: it allows to tune the length of the walks, which has been shown
to improve the performance in some situations (see, e.g., [5, 23]).

The log-sum-exp trick [17, 19, 25] aims at pre-computing x∗ = minj∈{1...n}(xj),

leading to the form softminθ,q(x) = x∗− 1
θ log

∑n
j=1 qj exp[−θ(xj−x∗)] and then

neglecting the terms in the summation for which θ(xj−x∗) is too large (exceeds
a certain threshold). This is a kind of pruning and has two benefits: it reduces
significantly the number of terms to be computed and it avoids numerical un-
derflow problems.

2 Notice that the usual free energy distance (not directed) is defined by symmetrization
of φij (Eq. 2, so that the resulting distance is symmetric [14, 20]), but this quantity
will not be used in this work.
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Fig. 1. The directed lattice derived from the original graph. It only considers walks of
length up to `.

Whereas the standard bag-of-paths framework is based on paths of un-
bounded length (from 0 to∞), our second technique considers only walks bounded
by a given length ` [5, 23]. This is done by defining a directed lattice L unfolding
the original graph G in terms of increasing walk lengths. More precisely, this lat-
tice is made of the graph nodes repeated at walk lengths τ = 0, 1, . . . , `, usually
with ` � n [23] (see Fig. 1). Then, transitions are only allowed from nodes at
walk length τ to successor nodes at length τ − 1 by means of the transition ma-
trix P of the killed random walk associated to the graph. This lattice represents
a bounded random walk on the graph G where walks’ lengths are in the interval
[0, `]. The combination of these two tricks allows to scale on large, sparse, graphs
– many edges are pruned and the computation occurs on a (usually small) grid.

In this context, on lattice L and considering now a set of target nodes A,
Eq. 2 becomes, for the initialization of the distances at τ = 0, corresponding to
zero-length walks,

φiA(0) =

{
∞ if i /∈ A
0 if i ∈ A (3)

Moreover, φiA(τ) contains the directed free energy distance from node i to the
absorbing nodes in A when considering walks up to length τ . A resulting distance
of ∞ means that no walk of length up to τ exists between node i and a node in
A – absorbing nodes cannot be reached in τ steps. Then, for walk length τ > 0,

φiA(τ + 1) =

−
1
θ log

[ ∑
j∈Succ(i)

pij exp
[
− θ(cij + φjA(τ))

]]
if i /∈ A

0 if i ∈ A
(4)

This recurrence relation defines the directed free energy distance to target nodes
A that will be used in our fraud detection application.

3.3 Application to the fraud detection problem

In order to incorporate the free energy (FE) framework into FDS APATE to
create the FDS called FraudsFree (FF), we introduce some other modifications.

The first modification is related to the computation of the risk score vector
ztri
k∗ = φtri

k∗, presented in Eq. 1. For that, we use Eq. 4 by considering each
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known fraud (Trx) as an absorbing node a ∈ A. We iterate this equation until
convergence to obtain the distance between all the nodes i and the set A which
corresponds to the risk score of each transaction, cardholder and merchant. At
this point, a score near 0 represents a fraud and a high value represents a genuine
transaction. In order to keep the same interpretation of the risk score as in
APATE3, we apply the following transformation

φtri
k∗ = max(φtri

k∗)− φtri
k∗ (5)

As for APATE [36] (see Section 2), we set the score of a new transaction j that
did not yet occur in the past between a cardholder k and a merchant i via Eq.
2, which provides the following expression

score(Trxj) =− 1
θ log

[
pji exp

[
− θ(cji + score(Meri))

]]
− 1

θ log
[
pjk exp

[
− θ(cjk + score(CHk))

]] (6)

where pji = pjk = 0.5 because a transaction is linked by construction with one
merchant and one cardholder and we fixed cji = cjk = 1 as the transaction
appends now (no decay), but this is still a degree of freedom of our method that
we left for further work.

4 Experimental comparisons and discussion

To evaluate our approach following the methodology of [21], we perform a com-
parison between the different versions of our FraudsFree (FF) model and the
other variations of APATE (Random Walk With Restart (RWWR) and Regu-
larized Commute Time Kernel (RCTK)), in supervised (SL) and semi-supervised
learning (SSL) with feedback (FB), on the same real-life e-commerce credit card
transaction dataset as [21]. The dataset contains 16 socio-demographic features
on 25,445,744 e-commerce transactions gathered during 139 days. The data are
highly imbalanced, with only 78,119 frauds among the transactions (< 0.31%).
The average size of Atri is 3,910,783. This dataset does not focus on a cer-
tain type of card fraud but contains all reported fraudulent transactions in the
investigated time period [21]. Besides the 16 original features, a set of 12 graph-
based features per node, as described in Section 2 and 3, is created for each
method. A small sample of this dataset is available on www.kaggle.com/mlg-
ulb/creditcardfraud but the data are anonymised and the transactions are not
presented day by day. Finally, all these features are fed into a class-rebalanced
random forest with 400 trees. Each tree is built based on a random selection of
4 features of the original dataset and 4 graph-based features.

In order to assess the performance of each method, we select two measures.
In accordance with field experts, we chose the Precision@100 in terms of card
(Card Pr@100) [21, 34] (which is the most realistic setting). More precisely, we
select the more fraudulent transactions according to the model until we screen

3 So that a score near 0 represents a genuine transaction and a high value represents
a fraud. The higher the score, the higher the risk.
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Classifier Hubs Learning Feedback Card Pr@100 Time Best parameter
RWWR SL = APATE No SL No 18.19 155.40 0.1
RWWR SSL+FB No SSL Yes 20.90 273.16 0.9
RCTK SL Yes SL No 21.48 195.43 0.9
RCTK SSL+FB Yes SSL Yes 24.03 294.07 0.7
RCTK SSL+FB 5 ITER Yes SSL Yes 22.82 122.60 0.9
FF SL No SL No 16.13 204.48 5
FF SSL+FB No SSL Yes 24.20 489.43 0.5
FF SSL+FB 5 ITER No SSL Yes 24.01 155.40 0.5

Table 1. Mean Card Pr@100 between Day 41 and Day 139 for each of the 8 methods
(see Section 2,3 and 4 for acronyms). The average time in seconds required to create
the tripartite graph and extract the 12 graph features between Day 41 and Day 139 is
also reported for each of the 8 methods.

100 cards. As a second measure, we use the average time in seconds required to
create the tripartite graph and extract the 12 graph features between Day 41
and Day 139.

Concerning the hyperparameters, the RWWR and RCTK methods consider
tuning values of α = {0.1, 0.3, 0.5, 0.7, 0.85, 0.9} and, for the FF methods θ =
{0.1, 0.5, 1, 5, 10}. For each method, we tuned its parameter based on the mean
Card Pr@100 between Day 30 and Day 40. The results for the best parameter
is presented in Table 14. We obtained these results by applying a sliding win-
dow technique in accordance with expert knowledge [21]. We set 15 days in the
training set, 7 days in the gapset (see Section 2 and [21]), 1 day in the test set
and we shifted the sliding window day by day. Furthermore, in order to exploit
all the properties of the bounded FE, we select the number of iterations (the
walk length `) for the best FF-based method based on a reasonable trade-off
Card Pr@100/time. For the sake of comparisons, we also limited the number of
RCTK iterations to the same number as in FF-based method.

To analyse the results with Card Pr@100 of Table 1, we use a nonparametric
Friedman-Nemenyi statistical test and a Wilcoxon signed-ranks tests [11]. We
perform all statistical tests at a level of confidence of 95%, which amounts to
taking an α of 0.05. From the results of the Nemenyi test illustrated in Fig. 2, four
methods perform equivalently, in terms of Card Pr@100, to the best one: the FE
SSL+FB, the FF SSL+FB 5 ITER, the RCTK SSL+FB and the RCTK SSL+FB
5 ITER. However, the Wilcoxon tests report that RCTK SSL+FB 5 ITER is
significantly inferior to the three other methods in one-to-one comparisons (with
respective p-values of 0.0055, 0.0252 and 0.0030). Even if we cannot ensure a
statistical difference between the top three, we still observe that there are some
differences in terms of their computation times. The FF SSL+FB 5 ITER method
is the fastest of the top three with a reduction of 47.16% in computation time
compared to the best method proposed by Lebichot et al. [21], RCTK SSL+FB.
All results were obtained with Matlab (version R2017a) running on an Intel
Xeon with 2 × 8 3.6Ghz processors and 128 GB of RAM.

4 Numerical values differ from [21] because the dataset was further curated : some
obvious fraud cases were removed.
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2 3 4 5 6

4 groups have mean column ranks significantly different from FF SSL+FB

FF SSL+FB 5 ITER

FF SSL+FB

FF SL

RCTK SSL+FB 5 ITER

RCTK SSL+FB

RCTK SL

RWWR SSL+FB

APATE

Friedman/Nemenyi test for Card Pr@100

Fig. 2. Mean ranks and 95% Nemenyi confidence intervals for the 8 methods (see Table
1) based on the Card Pr@100. Two methods are considered as significantly different if
their confidence intervals do not overlap.

5 Conclusion

In this paper, we investigate a version of the free energy distance that scales on
large, sparse graphs. It is used in the existing Fraud Detection System APATE in
order to extract features from the graph of transactions. Thanks to the properties
of the free energy, we manage to reduce the computational time and improve the
scalability of the Fraud Detection System. The Fraud Detection System based
on the free energy distance, FraudsFree, is competitive as it obtains a Pr@100
score on fraudulent card prediction comparable to the previous work of Lebichot
et al. [21] with a significant speed-up in computation. This shows that the free
energy distance can be used on real-word applications involving large graphs.
One considered further work is to deal with the hub nodes by modifying directly
the cost matrix, as it has shown good results in other studies [21]. Another
avenue that could be explored is to determine if our approach is complementary,
or just redundant, to existing fraud defence lines of our industrial partner.
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